

Our Ultimate End Goal:

What will our scientists to be able to do when they leave us?

By the end of their time at Fishbourne C.E. Primary School our Year 6 scientists will have built up a body of knowledge which will enable them to understand how science can be used to explain what is occurring around them, predict how things will behave and analyse causes. They will recognise the power of a rational explanation and be able to articulate scientific concepts clearly and precisely using accurate technical terminology. Scientific learning experiences will have developed an excitement and curiosity about natural phenomena and the world around them. This will prompt the asking of their own questions and the use of the relevant skills needed to work out and explain their answers. They will have an understanding that scientific ideas change and develop over time and how this has and continues to change our lives and futures. This full and rounded understanding of the world around them will impact their lives, influencing the choices that they make so that through their actions they are able to make the world a better place.

Curriculum Coverage (NC)

What are the most basic requirements from the National Curriculum?

To reduce the number of science learning experiences in every year group we have moved content around. This means some learning experiences will have a lot of science content to be covered. Please take this into account when you are planning the length of each experience as some content will not now be covered later on in the school.

Highlighted content shows which year group the content has been moved from.						
EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	<u>Plants</u>	Animals including humans	<u>Plants</u>	Animals including humans	Earth and Space	Animals including humans
	*Identify and name a variety	* Find out about and describe	* Identify and describe the	* Identify that humans and	* Describe the movement of	* Identify and name the main
	of common wild and garden	the basic needs of animals,	functions of different parts of	some other animals have	the Earth, and other planets,	parts of the human circulatory
	plants, including deciduous and	including humans, for survival	flowering plants: roots,	skeletons and muscles for	relative to the Sun in the solar	system, and describe the
	evergreen trees.	(water, food and air).	stem/trunk, leaves and flowers.	support, protection and	system.	functions of the heart, blood
	* Identify and describe the	* Describe the importance for	*Find out and describe how	<mark>movement. (Yr3)</mark>	* Describe the movement of	vessels and blood.
	basic structure of a variety of	humans of exercise, eating the	plants need water, light and a	* Describe the simple functions	the Moon relative to the Earth.	* Recognise the impact of diet,
	common flowering plants,	right amounts of different	<mark>suitable temperature to grow</mark>	of the basic parts of the	* Describe the Sun, Earth and	exercise, drugs and lifestyle on
	including trees.	types of food, and hygiene.	and stay healthy. (Yr2)	digestive system in humans.	Moon as approximately	the way their bodies function.
	* Observe and describe how	* Identify that animals,	* Explore the requirements of	* Identify the different types	spherical bodies.	* Describe the ways in which
	seeds and bulbs grow into	including humans, need the	plants for life and growth (air,	of teeth in humans and their	* Use the idea of the Earth's	nutrients and water are
	<mark>mature plants. (Yr2)</mark>	right types and amount of	light, water, nutrients from	simple functions.	rotation to explain day and	transported within animals,
		nutrition, and that they cannot	soil, and room to grow) and how		night and the apparent	including humans.
	Animals including humans	<mark>make their own food; they get</mark>	they vary from plant to plant.	Sound	movement of the sun across	
	*Identify and name a variety	nutrition from what they eat.	* Investigate the way in which	*Identify how sounds are	the sky.	Living things and their
	of common animals including	<mark>(Yr3)</mark>	water is transported within	made, associating some of them		<u>habitats</u>
	fish, amphibians, reptiles, birds		plants.	with something vibrating,	Forces	* Recognise that living things
	and mammals.	Living things and their	* Explore the part that flowers	* Recognise that vibrations	* Explain that unsupported	<mark>can be grouped in a variety of</mark>
	* Identify and name a variety	<u>habitats</u>	play in the life cycle of	from sounds travel through a	objects fall towards the Earth	ways.
	of common animals that are	*Explore and compare the	flowering plants, including	medium to the ear.	because of the force of gravity	* Explore and use classification
	carnivores, herbivores and	differences between things	pollination, seed formation and	* Find patterns between the	acting between the Earth and	keys to help group, identify and
	omnivores	that are living, dead, and things	seed dispersal.	pitch of a sound and features	the falling object.	<mark>name a variety of living things</mark>
	* Describe and compare the	that have never been alive.		of the object that produced it.	* Identify the effects of air	in their local and wider
	structure of a variety of	* Identify that most living	Rocks	* Find patterns between the	resistance, water resistance	<mark>environment.</mark>
	common animals (fish,	things live in habitats to which	*Compare and group together	volume of a sound and the	and friction that act between	* Recognise that environments
	amphibians, reptiles, birds and	they are suited and describe	different kinds of rocks on the	strength of the vibrations that	moving surfaces.	<mark>can change and that this can</mark>
	mammals, including pets).	how different habitats provide	basis of their appearance and	produced it.	* Recognise that some	<mark>sometimes pose dangers to</mark>
	* Identify, name, draw and	for the basic needs of	simple physical properties.	* Recognise that sounds get	mechanisms, including levers,	living things. (Yr4)
	label the basic parts of the	different kinds of animals and	* Describe in simple terms how	fainter as the distance from	pulleys and gears, allow a	* Describe how living things are
	human body and say which part	plants, and how they depend on	fossils are formed when things	the sound source increases.	smaller force to have a greater	classified into broad groups
	of the body is associated with	each other.	that have lived are trapped		effect.	according to common
	each sense.	* Identify and name a variety	within rock.	Electricity		observable characteristics and
		of plants and animals in their				based on similarities and

 National patients muchany how of program babba is provide in structure in concess and organic matter is a work or a social discription works or a social discription works or a social discription is a single feed chain. Units in discription is a single feed chain, unity the lidea of their program and program is a social that is a single feed chain. The set identify and name of their program is a social that is a single feed chain. The set identify and name of their program is a social that is a soci					
 Invance, Inverse of Sporger Mind Subtrager, Second Chance Second Chance "Observe changes across the four second. "Observe changes across the four second. "Observe changes across the four second. "Observe and describe wather associated with the seconds and how day length waries. "Discribe the waring four data is the absert of the program different surges of rad. "Everyday Materials" "Discribe the simple free different surges of rad. "Everyday Materials" "Discribe the simple free data the material from which is "Everyday materials, giass, matal, "Discribe the simple free data the material from which "Everyday materials, giass, matal, "Discribe the simple free secyclay materials, including the basis of the income security on charges of security on charges of security on charges, giass, matal, "Discribe the simple free security on charges, giass, matal, "Discribe the simple free security on charges, material, from which "Discribe the simple free security materials, m	* Notice that animals, including	habitats, including	* Recognise that soils are made	*identify common appliances	Properties a
 Pescribe how animals obtain Seasonal Charage * Describe now animals obtain other animals, using the ideo of for any seasonal charage * Describe now animals obtain other animals, using the ideo of there are usys to protect their there is an ideo ideo use to ideo use to the ideo use the ideo there the ideo the ideo there the ideo the ideo there the ideo there identify the ideo there iden	<mark>humans, have offspring which</mark>	microhabitats.	from rocks and organic matter.	that run on electricity.	<u>materials</u>
Seasonal Change Ther food from plants and of ther animals, unput the idea of a simple food chain. Within the seasons and how day length workers associated with the seasons and how day length workers. Liket ther food chain. Within the see identify and name different sources of food mapse. (VMS) Liket Seasons and how day length workers. A block that light is reflected in the seasons and how day length workers. A block that light is reflected in the seasons and how day length workers. A block that light is reflected in the seasons and how day length workers. A block that light is reflected in the seasons and how day length workers. A block that light is reflected in the seasons and how day length workers. A block that workers. A block that light is not workers. A block that workers. A block	<mark>grow into adults. (Yr2)</mark>	* Describe how animals obtain		* Construct a simple series	* compare ar
 Sessend Chance Observe and describe wether associated with these identify and name drawing its basis ports, including regiments, i		their food from plants and	<u>Light</u>	electrical circuit, identifying	everyday ma
 ¹⁰ Observe changes across the see identify and name different sources of food. ¹⁰ Wether associated with the see identify and name different sources of food. ¹⁰ More that light is reflected in the sources of food. ¹⁰ More that light is reflected in the sources of food. ¹⁰ More that light is reflected in the sources of food. ¹⁰ More that light is reflected in the sources of food. ¹⁰ More that light is reflected in the sources of food. ¹⁰ More that light is reflected in the sources of the sources o	<u>Seasonal Change</u>	other animals, using the idea of	*Recognise that they need	and naming its basic parts,	of their prop
 four second. Observe and describe weather associated with the second of the material different surces for dot. Terryday Material Distinguish between an object Terryday Materials. Terryday Materials. Describe the angle physical properties of a variety of everyday materials. Compare and group tragethics. Compare and group tragethics. Terryday materials. Compare and group tragethics. Terryday materials. Compare and group tragethics. Terryday materials. Totewish strageth travels in strageth travels in strageth travels in strageth travels. Terryday materials. Terryday materials.	*Observe changes across the	a simple food chain. Within	light in order to see things and	including cells, wires, bulbs,	their hardne
 * Observe and describe with the sensors and how day length varies. * Identify and mace a variety of everyday materials, including the are ways of protect this? * Abrice that shad with ear of everyday materials. * Compare and group together a variety of everyday materials, including the instraight progenties of a variety of everyday materials. * Compare and group together a variet of everyday materials, including the instraight progenties of a variety of everyday materials, including the instraight progenties of a variety of everyday materials. * Compare and group together a variet of everyday materials, including the instraight progenties of a variety of everyday materials, including the instraight progenties of a variety of everyday materials. * Totatify and how the shapes of a variety of everyday materials, including the instraight progenties of a variety of everyday materials, including the instraight progenties of a variety of everyday materials, including the instraight progenties of a variety of everyday materials, including the instraight progenties of a variety of everyday materials, including the instraight progenties of a variety of everyday materials, including the instraight progenties of a variety of everyday materials, including the instraight progenties of a variety of everyday materials, including the instraight progenties of a variety of everyday materials, including the instraight progenties of a variety of everyday materials, including the instraight progenties of a variety of everyday materials including the instraight progenties of a variety of everyday materials including the instraight progenties of a variety of everyday materials including the instraight progenties of a variety of everyday materials including the instraight progenties of a variety of everyday materials on the shopes of a variety of everyday materials on the shopes of a variety of everyday materials in a variety of everyday material	four seasons.	these identify and name	that dark is the absence of	switches and buzzers.	transparency
weather associated with the seasons and how doy length varies. Totantify producers, predators in from surfaces. * Notice that light is reticed. Image: the sum of the su	* Observe and describe	different sources of food.	light.	* Identify whether or not a	(electrical a
seases and how day length varies.	weather associated with the	Identify producers, predators	* Notice that light is reflected	lamp will light in a simple series	response to
 Varies. Fueryday Materials Fuscher Ausgewahlter Stranger Ausgewahlter Ausgewahlter Stranger Ausgewahlter Stranger Ausgewahlter Stranger Ausgewahlter Stranger Ausgewahlter Stranger Ausgewahlter Ausgew	seasons and how day length	and prey. (Yr4)	from surfaces.	circuit, based on whether or	* Know that
solution, and biogerous and the complete loop with a bartery. Solution, and the angerous and the complete loop with a bartery. Solution, and the angerous and the complete loop with a bartery. Solution, and the angerous and the complete loop with a bartery. Solution, and the angerous and the angerous and the complete loop with a bartery. Solution, and the angerous and the associate this with whether on not a loop lights in a simple discover a supervise some common word to ange the basis of ther simple physical properties. (rt) Solution, and the angerous and the associate this with whether on not a loop lights in a simple conclustors and insolutors, and associate this with whether on not a loop lights and solution. Solution, and the associate this with whether on not a loop lights and solution. Solution, and the associate this with whether on not a loop lights and solution. Solution, and the associate this with whether on not a loop lights and solution. Solution, and the associate this with whether on not a loop lights and solution. Solution, and the associate this with the number and voltage of a tree of the rests. If there are warely of everyday materials on the basis of ther simple physical properties. (rt) Solution, including the solution of a burget with a solution. Solution, including the solution of a burget with a solution. Solution, including the solution of a burget with a solution. Solution, including the solution of a witches in straight lines to anget the not our eyes of rom light sources to abjects and the or oversion for solutions. Solution, including the solution of a witches in straight lines to anget the measen the indepension of reservation with a solution. Solution, including the solution of a witches in the solution of a witches in straight lines to anget the water operation with the indepension of reservation with a solution. Solution, and the soluting the solution	varies.		* Recognise that light from the	not the lamp is part of a	dissolve in lie
Distinguish between a logict and the matterial from which is made.There are ways to proter the veys.* Accognise that shadows and closes a circuit and associate this with whether on a logical section and protection of a workey of properties of a variety of everyday materials a compare that shadows and properties of a variety of everyday materials a variety of everyday materials including the because that platic three yes a variety of everyday materials and basic to a bigets and there avariets the bight file store because that platic three yes a variet of everyday materials and basic to a bigets and that to avariety of everyday materials and basic to avariet thing. * Explain that we see three indential that the two sources to avaries to		Everyday Materials	sun can be dangerous and that	complete loop with a battery.	solution, and
and the material group watch is made, " Leterify and name a variety of everyday materials, including of everyday materials, including vector, and rock, " Describe the simple physical properties of a variety of everyday materials, including a variety of everyday materials, " Compare and group together a variety of everyday materials, " Compare and group together physical properties, (Y-1) " Lidentify and compare the suitability of a variety of everyday materials, including wood, metal, plastic, glass, " Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching. " Compare and soup together " Second the tables of there simple physical properties, (Y-1) " Second the tables of there simple physical properties, (Y-2) " Second the dat hold light travels in straight lines to solid objects made from some materials can be changed by squashing, bending, twisting and stretching. " Doserve that some daroes " Observe how magnets that " Compare and group materials, " Observe how magnets that " Compare and group materials, " Observe how magnets that " Compare and group materials, " Observe how magnets that " Scherity the part playday of ad stretching. " Describe the tables of the " Compare and group materials, " Observe how magnets the a variety of everyday materials, " Observe how magnets the a variety of everyday materials, " Observe how magnets the " Compare and group materials, " Observe how magnets that a dignet collegits, fluids or agaes. " Observe how magnets the a variety of everyday materials, " Describe the there and attrace. " Observe how magnets that " Compare and group materials, " Describe the there and attrace. " Observe how magnets the a variety of everyday materials, " Describe the there		Distinguish between an object	there are ways to protect their	* Recognise that a switch opens	recover a su
 Identify and name a variety of veryday materials, including the the light from the light from the light source is blocked by an opque object. Recognise that shade by an opque object. Recognise that shade the light from the light from the source is blocked by an opque object. Recognise that light from the light from the source is blocked by an opque object. Recognise that light from the light from the source is blocked by an opque object. Recognise that light from the source is blocked by an opque object. Recognise that light from the source is blocked by an opque object. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of source of shadwa change. Recognise that light from the source of shadwa change. Recognise that light from the source of source of		and the material from which it	eyes.	and closes a circuit and	Solution.
Tormed when the ight from a lamp ights in a simple ights in a simple series (rout). Properties of a variety of everydy materials, metalight inest is straight lines to everyde materials. Compare and group together a variety of everydy materials, including the size of shadows change. Properties of a variety of everydy materials, including the size of shadows change. Properties of everydy materials, metalight inest is straight lines to everyde materials. Properties of a variety of everydy materials, including the size of shadows change. Properties of everydy materials, metalight inest is straight lines to everyde materials. Properties of a variety of everydy materials, metalight inest is everyde materials. Properties of a variety of everydy materials, metalight inest is everyde materials. Properties of a variety of everydy materials, metalight inest is everyde materials. Properties of a variety of everydy materials, metalight inest is everyde materials. Properties of balls, the with event is event in the wark is a simple in the value of a variety of everyde materials. Properties of a variety of everydy materials, metalight inest is event in the value of a variety of everyde materials. Properties of a variety of everyde materials. Propertie		IS made.	^ Recognise that shadows are	associate this with whether or	^ Use Knowle
 and plastic, glass, metal water, and rock * Describe the simple physical properties of a variety of everyday materials, * Compare and group together a variety of everyday materials on the basis of their simple physical properties. (Yrt) * Tidentify and compare the suitability of a variety of everyday materials, including polycets are seen and voltage af a variety of everyday materials on the basis of their simple physical properties. (Yrt) * Tidentify and compare the suitability of a variety of everyday materials, including wood, metal, plastic, glass, metal brick, rock, paper and cardboard for particular uses. * Find out how the shapes of solid objects made from some materials can be changed * Time auto how the shapes of solid objects made from some materials can be changed * Describe that sight and to the creating brick, rock, paper and cardboard for particular uses. * Find out how the shapes of solid objects made from some materials can be changed * Describe that sight sources to an eyes of from some and stretching. * Describe that sight and the sources of a diagram. (Yrfs) * Describe that some forces and stretching. * Observe hat some materials robserve how magnets attract or repeal each other and attract ro repeal each other ther ryber rotactify some magneti		a Identity and name a variety	formed when the light from a	not a lamp lights in a simple	liquias ana g
 wood, pds. pds. glass, metal, water, and rock, "Exegorise start light apparents in the way that "bescribe the simple physical properties of a variety of everyday materials. "Gampare and group together a variety of everyday materials. "Gampare and group together a variety of everyday materials. "Liddentify and compare the suitability of a variety of everyday materials, including wood, metal, plastic, glass, brick, rock, paper and cardboard for particular uses. "Find out how the shapes of solid objects made from some materials can be changed from squashing, bending, twisting and stretching. "Discher hart some materials "Compare and group materials". "Discher hart some materials can be changed from solid objects made from some materials can be changed from squashing, bending, twisting and stretching. "Discher hart some materials "Compare and group materials". "Discher hart some materials "Compare and group materials". "Discher hart some materials can be changed from solid objects made from some materials can be changed from squashing, bending, twisting and stretching. "Discher hart some from bicktrock in the with shapers in "Compare and group materials". "Discher hart some materials "Compare and group materials". "Discher hart some materials "Compare and group materials". "Discher hart some form inghtsmas and group materials". "Discher hart some form solid abjects made from some and stretching. "Discher hart some form and animals." "Discher hart some materials and change stret when they are solids. The some and or objects and change stret when they are solids. The some and or objects and change stret when they are solids. The solid on distance. "Discher that some for ther and stretching." "Discher that some form and animals." "Discher that some form some streties and not others." "Discher that some some sof corn cret of evaporat		of everyday materials, including	light source is blocked by an	series circuit.	mixtures mig
 * Describet he simple physical properties of a variety of everyday materials. * Compare and group together a variety of everyday materials and group together a variety of everyday materials. * Compare and group together a variety of everyday materials in the way that light appears to avariety of everyday materials. * Use the idea that light may and the event in the way that the number and voltage of a buzzer with the our event and a buzter of a buzzer with the our event and the number and voltage of a buzzer with the our event and the number and voltage of a buzzer with the our event and the number and voltage of a buzzer with the our event and the number and voltage of a buzzer withe the our event and the our event and the our event and the ad		wood, plastic, glass, metal,	opaque object.	^ Recognise some common	including thr
 The size of sumple prysteam properties of a variety of everyday materials, Compare and group together, a variety of everyday materials The size of sumple prysteam Compare and group together, a variety of everyday materials, including me Tidentify and compare the suitability of a variety of everyday materials, including wood, metal, plastic, glass, brick, rock, paper and cardboard for particular uses. Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching. Terest and Magnets To any the value of a buzzer with the number and voltage of explain that objects rane seen because light travels from light sources to any regist of multiphers of bulks, the sources to any regist of multiphers travels in straight lines to explain that buses things to solid objects made from some materials can be changed by squashing, bending, twisting and stretching. The size of submerts The size of submerts Tradentify to a variety of everyday materials, including wood, metal, plastic, glass, brick, rock, paper and cardboard for particular uses. Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching. State of matter Compare and give register, according to whether to associated with the circuit State of matter Compare and give register, according to whether they are activative forces an ecd contact between two different surfaces. Notice that some forces and acritar distance. Observe that some materials on the basis of whether they are attracted to a ongert, and identify some magnetic The state of submer the some materials. The state of submer the submer the state of submer the sub submer the subter soft and aninulas St		water, and rock.	^ Find patterns in the way that	conductors and insulators, and	sieving and e
 because the diaght travels in straight lines, a variety of everyday materials a variety of everyday materials because they give out or "Lidentify and compore the suitability of a variety of everyday materials, including wood, netal, plastic, glass, brick, rock, paper and cardboard for particular uses, "Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching. Fores and Magnets "Compare and group materials tast them. (Yré) Fores and Magnets "Compare and group materials a variety of everyday materials, for light brick, rock, paper and cardboard for particular uses, "Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching. Fores and Magnets "Compare and group materials "Notice that some forees can cat ta a distance." * Observe that some forees can cat at a distance. * Observe that some materials "Compare and group materials a variety of everyday materials "Compare and group materials "Notice that some forees can cat at a distance. * Observe that some materials "Compare and group together a variety of everyday materials and not others. * Compare and group materials "Compare and group together a variety of everyday materials and not others. * Compare and group together a variety of everyday materials in the basis of whether they are attracted to a magnet; and identify some magnetic materials. 		Describe the simple physical	the size of shadows change.	associate metals with being	^ Give reaso
 To Travel in straight lines, in avanisty of everyday materials on the basis of their simple invalues in straight lines to explain that objects and see things because they give out on reflect light into the yee, including the sources to objects and cardboard for particular uses. Find out how the bases of their simple invalues in straight lines to explain that to be changed by sidows have the explain that some stores in each of the terms of the user of everyday materials and a thretching. Fores and Magnets Notice that some forces in each of the terms of the user of everyday materials and the tax some forces in each of the tax some materials and that some forces and the tax some materials and that some forces and the tax some materials and that some forces and the tax some materials and that some materials and that some materials and the tax some materials and the tax some materials and the tax some magnetic materials and the tax some magnetic materials and that the seques and the tax some magnetic materials and that some magnetic materials and the tax some magnetic materials and that some magnetic materials and the tax some magnetic materials and tax the tax and tax and the tax and the tax and tax and the tax and tax an		properties of a variety of	Recognise that light appears	good conductors.	evidence fro
Lompare and group together a variety of everyday materialsUse the lace that light travels in straight lines to explain that babiects are seen because they give out on reflect light into the eye.Image and give reasons for variations in how components function, including the suitability of a variety of * Explain that we see things bucks, rock, paper and cardboard for particular uses.Image and give reasons for variations in how components function, including the surges to bulks, the then to our eyes.Image and give reasons for variations in how components function, including the mitter is and to the to our eyes.Image and give reasons for variations in how components function, including the to giptimess of bulks, the thest our eyes.Image and give reasons for mising and c are reversible to unders of bulks, the the sources to our eyes or from light sources to our eyes.Image and group materials to alloget and to alloget and t		everyday materials.	to travel in straight lines.	Associate the brightness of a	fair tests, fo
and the basis of their simple physical properties. (Vr.1) * Tidentify of a variety of everyday materials, including word, metal, plastic, glass, brick, rock, paper and cardboard for particular uses, * Find out how the shapes of solid objects made from some materials and stretching.		Compare and group together	· Use the idea that light	lamp or the volume of a buzzer	uses of ever
and the basis of their singles physical properties. (Vr1) *Iidentify and compare the suitability of a variety of everydy materials, including wood, metal, plastic, glass, brick, rock, paper and cardboard for particular uses. * Find aut how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching.		a variety of everyday materials	travels in straight lines to	with the humber and voltage of	including me
 * Tidentify and compare the suitability of a variety of everyday materials, including wood, metal, plastic, glass, brick, rock, paper and cardboard for particular uses, * Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching. * Disch that some forces and Magnets * Compare and group regent for some materials and stretching. * Discretation of the sources to a magnet ic materials. * Observe how magnets attract or or speel each other and attract so me materials and ne changed by some materials can be changed by some attracted to a magnet; and identify some magnetic mattriet. * Observe how magnets attract or or research the temperature at a distance. * Observe how magnets attract or or reper and group together a variety of everyday materials and ne changed by some materials		on the basis of their simple	explain that objects are seen	cells used in the circuit.	plastic.
suitability of a variety of everyday materials, including wood, metal, plastic, glass, brick, rock, paper and cardboard for particular uses. * Find out how the shapes of solid objects materials can be changed by squashing, bending, twisting and stretching. * Explain that we see things because light travels from light ight sources to objects and travels in straight lines to explain why shadows have the same shape as the objects that cast them. (Yró) * Eorces and Magnets * Notice that some forces need contact between two objects, but magnetic forces can act at a distance. * Observe that some materials on the basis of whether they are attracted to a magneti, and identify some magnetic materials.		*Tidentify and compare the	pecause they give out of	compare and give reasons for	Demonstru mixing and a
everyday materials, including me er reversion wood, metal, plastic, glass, brick, rock, paper and cardboard for particular uses. * Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching. * Observe that some forces need contact between two objects, but magnetic for a distance. * Observe how magnets attract or reple ach other and attract some materials and not others. * Compare and group materials in the basis of whether they are attracted to a magnet, and identify some magnetic materials.		auitability of a variaty of	* Explain that we goe thing	function including the	mixing and c
wood, metal, plastic, glass ardboard for particular uses. * Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching. * Describe t * Compare how things move on different surfaces. * Notice that some forces * Compare and group together * Ziednifty the part played by evaporation and condensation in the water cycle and associate the rate of evaporation with temperature. * Describe t * Identify some magnetic materials.		sundbilly of a variety of	Explain that we see things	function, including the	the reversion the
wood, heru, paper and cardboard for particular uses. * Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching.		everyody materials, including	because light thaveis thom light	brightness of burzons and the	Explain the
 b) Inc., Tock, page and cardboard for particular uses. * Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching. * Use the idea that light travels in straight lines to care yes. * Use the idea that light travels in straight lines to care yes. * Use the idea that light travels in straight lines to care yes. * Use the idea that light travels in straight lines to care yes. * Use the idea that light travels in straight lines to care yes. * Use the idea that light travels in straight lines to care yes. * Use the idea that light travels in straight lines to care yes. * Use the idea that light travels in straight lines to care yes. * Use the idea that light travels in straight lines to care yes. * Use the idea that light travels in straight lines to care yes. * Use the idea that light travels in straight lines to care yes. * Use the idea that light travels in straight lines to care yes. * Use the idea that light travels in straight lines to care yes. * Compare and group materials and animals. * Observe that some materials and animals. * Observe that some materials and not others. * Observe how magnets attract or repel each other and attract. * Observe how magnets attract or a magnet. * Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet. 		brick nack papar and	light courses to objects and	on aff pagition of cwitches	result in the
* Find out whether stages of solid objects made from some materials can be changed by squashing, bending, twisting and stretching. * Use the idea that light travels in straight lines to explain why shadows have the same shape as the objects that cast them. (Yr6) * Compare and group materials together, according to whether they are solids, liquids or gases. * Observe that some materials change state when they are heated or cooled, and measure or research the temperature at at a distance. * Observe how magnets attract or repel each other and attract some materials and no tothers. * Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnetic materials.		cardboard for particular uses	then to our eyes	* Use recognised symbols when	change is no
solid objects made from some materials can be changed by squashing, bending, twisting and stretching.		* Find out how the shapes of	* Use the idea that light	representing a simple circuit in	revensible i
 and objects in adde if only shadows have the same shape as the objects that cast them. (Yr6) States of matter Compare haw things move on different surfaces. Notice that some forces need contact between two objects, but magnetic forces can act at a distance. Observe how magnets attract or repeal each of ther and attract. Observe how magnets attract or repeal each of ther and attract or repearch the temperature. Torme and group together a variety of everyday materials. Torme magnetic materials. 		solid objects made from some	travels in straight lines to	a diagram (Vr6)	associated w
squashing, bending, twisting and stretching. Same shape as the objects that and stretching. Same shape as the objects that cast them. (Yr6) States of matter * Compare and group materials together, according to whether they are solids, liquids or gases. * Observe that some materials * Notice that some forces need contact between two objects, but magnetic forces can act at a distance. * Observe how magnets attract or repel each other and attract some materials and not others. * Compare and group materials the attract of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials.		materials can be changed by	explain why shadows have the		the action of
and stretching. and stretching. and stretching. and stretching.		squashing bending twisting	same shape as the objects that	States of matter	hicarbonate
Inite Sheetening. In		and stretching	cast them (Vr6)	* Compare and aroun materials	bical bonate
Forces and Magnetsthey are solids, liquids or gases.and animals materials*Compare how things move on different surfaces.* Observe that some materials change state when they are heated or cooled, and measure objects, but magnetic forces can act at a distance.* Observe that some materials change state when they are heated or cooled, and measure at which this happens in at which this happens in at which this happens in a contact between two objects, but magnetic forces or repel each other and attract some materials and not others.* Describe t reproduction at which this happens in at which this happens in at which this happens in at which this happens in at a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials.* Identify the part played by the water cycle and associate the rate of evaporation with temperature.* Means temperature		and shretening.		together according to whether	l ivina things
*Compare how things move on different surfaces. * Notice that some forces need contact between two objects, but magnetic forces can act at a distance. * Observe how magnets attract or repel each other and attract * Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnetic materials.			Forces and Magnets	they are solids liquids or	and animals
different surfaces. * Observe that some materials * Observe that some materials * Observe that some materials * Observe that some materials * Observe that some materials change state when they are heated or cooled, and measure or research the temperature at which this happens in * Observe how magnets attract or repel each other and attract * Observe how magnets attract or repel each other and attract * Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials.			*Compare how things move on	anses	* Describe t
* Notice that some forces need contact between two objects, but magnetic forces can act at a distance. * Observe how magnets attract or repel each other and attract some materials and not others. * Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials.			different surfaces	* Observe that some materials	the life cycl
need contact between two objects, but magnetic forces can act at a distance. * Observe how magnets attract or repel each other and attract some materials and not others. * Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials.			* Notice that some forces	change state when they are	amphibian a
objects, but magnetic forces can act at a distance. * Observe how magnets attract or repel each other and attract some materials and not others. * Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials.			need contact between two	heated or cooled and measure	* Describe t
can act at a distance. * Observe how magnets attract or repel each other and attract some materials and not others. * Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials.			objects but magnetic forces	or research the temperature	reproduction
* Observe how magnets attract or repel each other and attract some materials and not others. * Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials.			can act at a distance	at which this happens in	animals
or repel each other and attract some materials and not others. * Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials.			* Observe how magnets attract	degrees Celsius (°C)	* Describe †
some materials and not others. * Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials.			or repel each other and attract	* Identify the part played by	humans deve
* Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials.			some materials and not others	evaporation and condensation in	
a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials.			* Compare and aroup together	the water cycle and associate	
on the basis of whether they are attracted to a magnet, and identify some magnetic materials.			a variety of everyday materials	the rate of evaporation with	
are attracted to a magnet, and identify some magnetic materials.			on the basis of whether thev	temperature.	
identify some magnetic materials.			are attracted to a magnet, and		
materials.			identify some magnetic		
			materials.		

and changes of

nd group together aterials on the basis perties, including ess, solubility, y, conductivity nd thermal), and magnets. some materials will quid to form a d describe how to ubstance from a

edge of solids, pases to decide how ght be separated, rough filtering, evaporating. ons, based on om comparative and for the particular ryday materials, stals, wood and

ate that dissolving, changes of state ole changes. at some changes e formation of new nd that this kind of ot usually including changes with burning and f acid on of soda.

s their habitats including humans

the differences in les of a mammal, an an insect and a bird. the life process of on in some plants and

the changes as elop to old age. differences, including microorganisms, plants and animals.

* Give reasons for classifying plants and animals based on specific characteristics.

Evolution and inheritance

* Recognise that living things have changed over time and that fossils provide information about living things that inhabited the Earth millions of years ago.

* Recognise that living things produce offspring of the same kind, but normally offspring vary and are not identical to their parents.

* Identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to evolution.

* Describe magnets as having	
two poles.	
* Predict whether two magnets	
will attract or repel each	
other, depending on which poles	
are facing.	

PROCEDURAL KNOLWEDGE -	· What skills do we want our sc	ientists to have? Analyse, evalu	late and solve problems		
How will these skills build on	what went before and help prep	pare our children for what is co	oming next?		
EYFS	Year 1	Year 2	Year 3	Year 4	Ye
Show curiosity about objects,	Ask questions and plan enquiry		Ask questions and plan enquiry		Ask questions
events and people. Question	Explore the world around them a	and raise their own simple	Raise their own relevant question	ns about the world around them.	Use their scien
why things happen.	questions. Recognise that they c	an be answered in different	Start to make decisions about th	e most appropriate type of	different kinds
	ways. Ask people questions and b	begin to use simple secondary	scientific enquiry to use to answe	er them. Recognise when and how	enquiries to ans
Engage in open-ended activity.	sources.		secondary sources might help to	answer questions that cannot be	controlling vari
			answered through practical inves	sources will be	
Take a risk, engage in new	<u>Set up enquiry</u>				separate opinio
experiences and learn by trial	Experience different types of so	cientific enquiry, including	<u>Set up enquiry</u>		
and error.	practical activities. Carry out sin	nple tests.	Set up simple practical enquiries	, comparative and fair tests.	<u>Set up enquiry</u>
			Recognise when a simple fair tes	t is necessary and help to decide	Recognise when
Find ways to solve problems /	<u>Observe + Measure</u>		on how to set it up.		explain which v
find new ways to do things /	Observe closely, using simple equ	uipment such as hand lenses and			previous test re
test their ideas.	egg timers. Observe changes ove	er time. With guidance begin to	<u>Observe + Measure</u>		comparative an
	notice patterns and relationships	5.	Help to decide which systematic	and careful observations to	
Develop ideas of grouping,			make and for how long. Where a	opropriate, take accurate	Observe + Me
sequences, cause and effect.	Record		measurements using standard un	its, using a range of equipment,	Make their own
	Gather and record simple data to	o help in answering questions.	including thermometers and data loggers. Begin to look for		measurements
Know about similarities and			patterns and relationships and decide what data to collect to		measurements,
differences in relation to	<u>Interpret + Report</u>		identify them.		increasing accu
places, objects, materials and	Use their observations and ideas	s to suggest answers to			appropriate. Lo
living things.	questions. Talk about what they	have found out and how they	Record		and identify ev
	found it out. Begin to use simple	scientific language.	Gather, record, classify and present data in a variety of ways to		
Comment and ask questions			help in answering questions. Record findings using simple		Record
about aspects of their familiar	<u>Evaluate</u>		scientific language, drawings, labelled diagrams, keys, bar charts,		Decide how to 1
world such as the place where	Use their observations and ideas	s to suggest answers to	and tables.		using scientific
they live or the natural world.	questions.				scatter graphs
			<u>Interpret + Report</u>		
Closely observe what animals,			Look for changes, patterns, simil	arities and differences in their	<u>Interpret + Re</u>
people and vehicles do.			data in order to draw simple conclusions. And answer their		Identify the sc
Use senses to explore the			questions. Use relevant simple so	ientific language to discuss their	refute ideas or
world around them.			ideas and communicate their find	lings in ways that are	illustrations to
			appropriate for their audience, i	ncluding oral and written	ideas. Use oral
Make links and notice patterns			explanations, displays or present	ations of their results and	presentations t
in their experience.			conclusions.		explanations of
Choose the resources they			<u>Evaluate</u>		<u>Evaluate</u>
need for their chosen			Draw simple conclusions, identify	new questions arising from the	Identify and ev
activities.			results, make predictions for an	extended investigation, suggest	that has been u
Handle equipment and tools			improvements and raise further	questions.	Use their resul
effectively.					observations, c
Create simple representations					
of events, people and objects.					

ear 5

Year 6

and plan enguiry

nce experiences to explore ideas and raise of questions. Plan different types of scientific swer their own questions, including recognising and iables where necessary. Recognise which secondary most useful to research their ideas and begin to on from fact.

and how to set up comparative and fair tests and variables need to be controlled and why. Use results to make predictions to set up further nd fair tests.

asure

decisions about what observations to make, what to use and how long to make them for. Take , using a range of scientific equipment, with iracy and precision, taking repeat readings when ook for different causal relationships in their data idence that refutes or supports their ideas.

record data and results of increasing complexity diagrams and labels, classification keys, tables, bar and line graphs.

eport

cientific evidence that has been used to support or arguments. Use relevant scientific language and discuss, communicate and justify their scientific and written forms such as displays and other to report conclusions, causal relationships and degree of trust in their results.

valuate scientific evidence (their own and others') used to support or refute ideas or arguments. Its to make predictions and identify when further comparative and fair tests might be needed.

Answer how and why questions about their experiences. Make observations of animals and plants and explain why some things occur, and talk about changes.		
Develop their own narratives and explanations by connecting ideas or events. Build up vocabulary that reflects the breadth of their		

PROPOSITIONAL KNOWLEDGE - What key concepts or knowledge will our scientists have?

What knowledge do we want :	What knowledge do we want to emphasise? How will knowledge be built on what went before and prepare our children for what is coming next?					
EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	<u>Plants</u>	Animals including humans	Rocks	Animals including humans	Earth and Space	Animals including humans
	People may grow plants in their	All animals need water, air and	There are three types of rocks	Vertebrates are animals that	The Earth rotates on its axis	Some choices, such as smoking
	gardens and care for them.	food to survive.	that are formed naturally.	have a backbone. These	anti-clockwise and makes a	and drinking alcohol can be
	They may grow flowering	To keep healthy, humans need:	Igneous: When molten magma	skeletons are called	complete rotation over 24	harmful to our health.
	plants which are beautiful to	to eat a balanced diet and	cools, igneous rocks are	endoskeletons - this means	hours (a day).	Tobacco can cause short-term
	look at or beans and seeds to	healthy food, some exercise to	formed. This either cools and	that the skeletons are on the	This makes it appear as though	effects such as shortness of
	grow plants for food.	keep their muscles and bones	forms rocks under the earth's	inside of the bodies. These	the Sun moves through the sky	breath, difficulty sleeping and
	The names of some common	healthy, to take medicines that	surface, or flows out of	skeletons grow with the bodies.	but the Earth's rotation causes	loss of taste and long-term
	garden plants are: rose, poppy,	are given by doctors and nurses	erupting volcanoes as lava and	When the skeleton exists	day and night.	effects such as lung disease,
	sunflower	when feeling poorly, to keep	may mix with other minerals.	outside the body, it is called an	Different parts of the Earth	cancer and death.
	A wild plant will grow by itself.	good hygiene by washing	Examples include granite and	exoskeleton. An exoskeleton is	experience daylight at	Alcohol can cause short-term
	It does not need to be cared	regularly, having clean clothes,	basalt. This type of rock is	a covering that supports and	different times.	effects such as addiction and
	for. If it grows somewhere	brushing teeth and hair.	strong, hardwearing and non-	protects animals. These have	It is morning, afternoon and	loss of control and long-term
	unwanted, it may be a weed .	Humans cannot make their own	porous.	to be shed and a new skeleton	night in different places.	effects such as organ damage,
	Some common wild plants are:	food like plants do - we need to	Sedimentary: Sometimes, little	is grown.	This is also the reason why we	cancer and death
	dandelion, daisy, buttercup,	eat plants and animals to get	pieces of rocks that have been	The three most important	have time zones.	
	nettle and clover	our energy.	weathered can be found at the	functions of a skeleton are:	Because of the Earth's tilt ,	Exercise can: tone our muscles
	Deciduous trees lose their	Healthy, balanced diets lead to	bottom of lakes, seas and	provide support and shape to	the poles experience 24 hours	and reduce fat, increase
	leaves in the autumn every	healthy, active people.	rivers. This is called sediment.	an animal's body. Allow	of sunlight in the summer, and	fitness, make you feel
	year. Their leaves are generally	The different food types are:	Over millions of years, layers	movement through the joints.	very few hours of sunlight in	physically and mentally
	broad, flat and have veins	Fruit and vegetables;	of this sediment builds up	Protect organs (e.g. the skull	the winter.	healthier, strengthens the
	running through them.	Bread, rice, potatoes, pasta	forming sedimentary rocks.	protects the brain)	As the Earth rotates, shadows	heart, improves lung function,
	Evergreen trees have green	and other starchy foods;	Examples include limestone and	Joints are where bones meet -	that are formed change in size	improves skin.
	leaves all year round. Their	Milk and, oils and spreads;	chalk. Sedimentary rocks are	they allow our bodies to move.	and orientation.	
	leaves are generally thick, waxy	Meat, fish, eggs, beans and	porous and can easily be worn	Muscles contract and relax. If	The Earth takes 365 and a	The circulatory system is
	and narrow like needles.	other non-dairy sources of	down.	you place an elbow on a desk	quarter days to orbit the Sun.	made of the heart , lungs and
	Parts of common trees: Crown,	protein.	Metamorphic: When some	and lift your arm up, muscles in	Because of the extra quarter	the blood vessels.
	leaves, twig, branch, trunk	The different types of	igneous and sedimentary rocks	your upper arm (biceps)	day it takes to orbit the Sun,	Arteries carry oxygenated
	and roots.	nutrients:	are heated and squeezed	contract while muscles behind	every four years on Earth is a	blood from the heart to the
	Parts of common plants: roots,	<u>Proteins</u> help your body to grow	(pressured), they form	the upper arm (triceps) relax.	leap year	rest of the body.
	stem, leaf, flower, seed.	and repair itself, examples	metamorphic rocks. Examples	The muscles work together and	It is the Earth's tilt that	Veins carry deoxygenated
		include red meat, yogurt, and	include slate and marble.	in opposition to allow your arm	causes the seasons.	blood from the body to the
	Animals including humans	beans.	Metamorphic rocks are strong.	to move.	The Moon orbits the Earth	heart.
	A life cycle is the series of	<u>Carbohydrates</u> give you energy,	Fossils are the remains of	Muscles are connected to	anticlockwise and takes	Nutrients, oxygen and carbon
	changes that an animal or plant	examples include bread,	prehistoric life. They are	bones by tendons .	approximately 28 days .	dioxide are exchanged via the
	passes through from the	potatoes, pasta.	usually formed when a living			capillaries.

beginning of its life until its	Fats give you energy examples	thing (plant or animal) dies and	Teeth are used for cutting and	The Moon snin
death	include nuts oils and avocados	the body is covered up or	chewing food	every time it o
Animals including humans have	Vitamins keen your body	huried by sediment over tens	Humans look after their teeth	means that we
offspring which grow into	healthy examples of foods	of thousands of years. Some	by brushing and flassing and	side of the Mo
adults	high in vitamins include	fossils are formed when the	ensuring that they do not eat	The Moon has
Vertebrates are animals that	oranges carrots and nuts	tough bones and teeth in	foods high in sugar	depending on w
have a backhone	Minerals keen your body	animals and the woody part of	Not looking after teeth can	orbit
There are five around of	healthy examples of foods	plants are preserved Other	lead to an increase in plaque	The Moon's on
vertebrates: mammals fish	high in minerals include milk	fossils are made from imprints	and tooth decay	and low tides
hinds nentiles amphibians	sweetcorn and sninach	in surrounding sedimentary	Conines are pointed for teaning	There are 8 n
Mammals give birth to live	Fibre helps you to digest the	rack such as footprints or	and ninning food - these are	Solar System
voune usually have hain on fun	food that you have eaten	imprints from shalls	usually used when chewing	Earth Marc T
warm-blooded cannot breathe	examples of foods high in fibre	Soil is made from pieces of	usually used when chewing	Lui M, Mui S, J
underwater	include whole angin bread	rock minerals decaying plants	Theirons are shoved shaped and	is a dwarf plan
Some common memmale and	canada and lantila	and water When pack is broken	help bite lumps out of and	They all orbit
some common manimals are.	Weter halps to move nutrients	down into small onging soil is	sutting food	a sten
hematona form onimala such as	<u>in your body and act rid of</u>	formed There are levere of	Premalers and malans and flat	u siur. Somo planota l
numsters, furm animals such as	In your body and get hid of	formed. There are layers of	and they arind and anuch food	The first four
cows, sheep and horses. What	waste that you don't need,	Soli. Above the soli is leaf	and they grind and crush food.	The first four
animals such as toxes,	examples of foods high in	litter and recently decaying	The smell of food friggers	relatively small
neagenogs, lions and giraftes	water include celery, cucumber,	plants. As the soil becomes	sailva to be produced.	the four outer
and then numans	tomatoes.	deeper, the rock grains become	The digestive system begins	giants (Jupiter
Fish have fins and scales,	Living this and their	larger until bedrock is reached.	with the mouth and teeth	ice giants (Ura
breathe underwater using gills,	Living things and their		where food is ingested and	Neptune).
lay eggs in water, and are cold-	<u>nabitats</u>	Light	cnewed.	There are also
blooded.	A nabitat is a place where	A light source is something	Saliva is mixed with the food	meteoroids and
Some common fish are salmon,	living things, such as animals	that emits light by burning,	which helps to break it up.	Solar System.
cod and funa.	and plants, can find all of the	electricity or chemical	When the food is small enough	The Solar Sys
Birds are warm-blooded, have	things they need to survive.	reactions.	to be swallowed, it is pushed	galaxy called t
wings and beaks, have	This includes food, water, air,	We must never look directly at	down the oesophagus by	The galaxy is i
feathers, lay eggs.	space to move and grow and	the Sun as the light produced	muscles to the stomach.	-
Some common birds are ducks,	some shelter.	is very bright and can be	In the stomach, food is mixed	Forces
chickens, penguins and pigeons.	Some habitats are large, like	harmful to our eyes. This is	further.	Forces are pus
Reptiles are cold-blooded, lay	the ocean, and some are very	why we wear sunglasses.	The mixed food is then sent to	These forces
eggs, have scales, and cannot	small, such as under a log.	We need light so that we are	the small intestine which	motion of an o
breathe underwater.	Some habitats in our local area	able to see in the dark.	absorbs nutrients from the	start, speed u
Some common reptiles are	include the river and	The Moon is not a source of	food.	stop moving.
snakes and lizards.	woodlands. Other habitats	light. The Sun's light reflects	Any leftover broken down food	Friction is a fo
Amphibians are cold-blooded,	include the coast and the	on the surface of the Moon	then moves on to the large	resistance of 1
lay eggs, live on land and water	forest.	making it appear as though the	intestine.	object rubs ag
- can breathe underwater	Microhabitats are very small	Moon emits light. Shiny things	The food minus the nutrients	Other forces
through gills.	habitats where minibeasts may	are not light sources - they	arrives in the rectum where	resistance of r
Some common amphibians are	live. Examples of microhabitats	also reflect the light.	muscles turn it into faeces. It	water resistan
frogs and toads.	include under stones, in grass,	Light travels in straight lines.	is stored here until it is pushed	resistance.
Invertebrates are animals that	under fallen leaves and in the	When light is blocked by an	out by the anus . This is called	Gravity is the
do not have a backbone. They	soil.	opaque object, a dark shadow	excretion.	objects to the
include: insects such as flies,	Minibeasts that can be found	is formed.		Earth.
ladybirds and bees, arachnids	there include worms, snails,	These shadows have the same	Sound	Air resistance
such as spiders, molluscs such	ants, centipedes, millipedes,	shape as the objects that cast	The object that makes the	the parachute
as snails.	and butterflies and they help	them.	sound is called the source.	torce of gravi
Animals that only eat meat	to keep the microhabitat	The size of a shadow changes	When objects vibrate, a sound	the parachute
(other animals) are called	healthy.	as the light source moves	is made.	Water resista
carnivores examples include	Minibeasts are able to survive	closer or further away.	The vibration makes the air	friction that is
lions and eagles.	in their habitats because they	The further away the light	around the object vibrate and	between water
Animals that only eat plants	can find the things they need	source is, the smaller the	the air vibrations enter your	that is moving
are called herbivores		shadow is. The closer the		

pins once on its axis t orbits Earth. This we only see one Moon.

as different **phases** n where it is in its

gravity causes high

planets in our m (Mercury, Venus, , Jupiter, Saturn, Neptune). Pluto lanet. it the **Sun**, which is

rs have **moons**. bur planets are nall and rocky, while ter planets are gas ter and Saturn) or Jranus and

lso **asteroids**, and **comets** in the em. System is in a d the Milky Way. is in the **universe**.

bushes and pulls. es **change** the n object making it **d up, slow down or**

a force - it is the of motion when one against another. es that create of motion include **tance** and **air**

he force that **pulls** he **centre of the**

te, opposing the wity. This makes te land more slowly. stance is the t is created ter and an object ng through it. The heart is composed of four chambers; the right atrium, the right ventricle, the left atrium and the left ventricle. How often your heart pumps is called your pulse.

1. Deoxygenated blood is sent to the heart from the rest of the body.

 2. This is then sent from the heart to the lungs. Here, the blood picks up oxygen and disposes of carbon dioxide.
 3. Oxygenated blood is then sent back to the heart.
 4. The heart sends the oxygenated blood back to the rest of the body.

<u>Living things and their</u> <u>habitats</u>

All living things, which can also be called organisms, have to do certain things to stay alive. These are the life processes: movement, respiration, sensitivity, growth, reproduction, excretion and nutrition

Living things can be **grouped** according to different **criteria** (where they live, what type of organism they are, what features they have) A **classification key** is a tool that is used to **group** living things to help us **identify** them using recognisable characteristics.

Habitats can change throughout the year and this can have an affect on the plants and animals that live there.

Humans can have positive and negative effects on the environment: positive effects: nature reserves, ecological parks. Negative effects: litter, urban development

(examples include cows and	to survive there, such as food	source of the light, the bigger	ear. These are called sound	Some object
giraffes)	and water.	the shadow.	waves.	through wat
Animals that eat plants and	Animals and plants depend on	Reflection is when light	Sound waves travel through a	resistance if
meat are called omnivores	each other to survive . For	bounces off a surface - this	medium (such as air , water ,	streamlined.
(examples include humans and	example, worms depend on	changes the direction in which	glass, stone, and brick).	Levers and I
squirrels)	plants because they feed on	the light travels.	The sound waves travel to the	do heavy woi
The different parts of the	dead leaves, but plants depend	We can see round corners using	ear and make the eardrums	, Gears are to
body.	on worms who make the soil	mirrors and reflecting light.	vibrate.	Their 'teeth'
Hair - this arows on our head	healthy by digging holes and		Messages are sent to the brain	other so tha
and helps to protect our skull.	allowing air in Birds also need	Forces and Magnets	which recognises the vibrations	wheel turns
The skull is the bone that	worms because they eat them.	Forces are pushes and pulls.	as sounds.	one. This allo
protects our brain	Worms are a source of food	These forces change the	The pitch of a sound is how	across a sur
Eves - these help us see	for birds. This called a food	motion of an object. They will	high or low it is	Springs can
Fars - these help us hear	chain	make it start to move or speed	The volume of a sound is how	squashed Th
Mouth - we use our mouth to	Tf there were no worms there	up slow it down or even make it	loud or quiet it is	force pulling
eat and talk Inside our mouths	would be less birds as there	ston	When a sound is created by a	spring the g
are tongues which help us taste	would be more competition for	Forces act in opposite	little amount of energy a	the spring us
and teeth	food The soil would not be as	directions to each other	weak sound wave is created	ite normal ek
Shouldens - these help our	healthy without worms	When an object moves across a	which doesn't travel for This	113 101 1101 31
and to lift up	All living things (on things that	curface friction acts as an	makes a quiet sound	Propontion
unnis to ini tup	An inving mings (or mings man	surface, friction acts as an	A with action with late of energy	Properties of
things and write	were once inving) have a part to	force that helds head the	A vibration with lots of energy	<u>Materials</u>
Knoos these help us hand aug	play in food chains. Without	force that holds back the	makes a powertul sound wave	Marerials wr
chees - these help us bend our	them, other animals and plants	motion of an object. Some	and therefore a loud sound.	thermal con
legs	may not be able to survive.	surfaces create more friction	Amplitude measures now	to move thr
reet - These help us stay		than others which means that	strong a sound wave is. (The	such as a sai
balanced and upright.	A tood chain is a simple way to	objects move across them	higher the wave the stronger	requires nea
Elbows - these help our arms to	show the direction in which	slower.	the sound)	to cook tood
bend	energy moves from the	On a ramp, the force that	Decibels measure how loud a	Thermal ins
Neck - connects the head to	producer to the various	causes the object to move	sound is.	heat travel
the rest of the body	consumers to the top or	downwards is gravity. Objects	Frequency measures the	easily. Such
Nose - helps us smell	tertiary consumer.	move differently depending on	number of times per second	and flasks fo
Eyebrows - these protect our	The producer (a plant) gets its	the surface of the object	that the sound wave cycles.	Electrical co
eyes	energy from the Sun.	itself and the surface of the	(How many waves and how close	electricity t
We have five senses .	An example: the producer	ramp.	they are.)	them easily
 We smell using our nose. 	(wheat), gets its energy from	Magnets produce an area of		insulators do
We taste using our tongue.	the Sun. The mouse (primary	force around them called a	<u>Electricity</u>	Electrical in
3) We touch using parts of our	consumer) eats the wheat and	magnetic field. When objects	Electricity is generated using	high resistai
body, like our hands .	gets its energy from it. The	enter this magnetic field, they	energy from natural sources	that it is ha i
We see using our eyes.	mouse is then eaten by the owl	will be attracted to or repelled	such as the Sun, oil, water and	to pass thro
5) We hear using our ears .	(secondary consumer). The owl	from the magnet if they are	wind. These can also be called	When the p
	gets its energy from the	magnetic.	fuel sources.	mix with the
<u>Seasonal Change</u>	mouse. The owl is the predator	When magnets repel , the push	Some appliances use batteries	liquid , this is
There are four seasons :	and the mouse is the prey . The	each other away. When	and some use mains electricity.	The result is
Autumn - September, October,	owl is then eaten by the wolf	magnets attract, they pull	Batteries come in different	Materials th
November	(tertiary consumer). The wolf	together.	sizes depending on how much	soluble. Mat
Winter - December, January,	gets its energy from the owl.	Objects that are magnetic , are	and for how long the appliance	dissolve are
February	The arrows show the direction	attracted to magnets. Iron and	is used.	Some mater
Spring - March, April, May	in which the energy travels .	steel are magnetic. Aluminium	A complete circuit is a loop	separated at
Summer - June, July, August	A food web shows the	and copper are non-magnetic.	that allows electrical current	been mixed
In Autumn - The temperature	direction in which enerav	The ends of a magnet are	to flow through wires.	properties -
beings to fall , which means it	travels when animals and	called poles. One end is called	A circuit contains a batterv	reversible c
aets colder. The leaves on	producers (plants) are eaten by	the north pole and the other	(cell), wires and an appliance	Some metho
deciduous trees change colour	more than one thing	end is called the south pole	that requires electricity to	include the u
and begin to fall to the	When part of the food chain is	Opposite poles attract	work (such as a bulb motor or	filter (for in
	removed this has an impact on	similar poles renel	buzzer)	

ts can move ter with less f they are

Pulleys allow us to rk with less effort. bothed wheels. I' can fit into each at when the first , so does the next ows forces to move face.

be stretched or he greater the g or pushing the greater the force ses to move back to hape.

and changes of

hich are good I**ductors allow heat** T**ough** them easily, ucepan which at to travel through

sulators do not let through them as woollen clothes or hot drinks. onductors allow to pass through while electrical o not.

nsulators have a ance which means ard for electricity ough these objects. particles of a solid e particles of a is called dissolving. is a solution. hat dissolve are terials that do not e insoluble. rials can be

fter they have based on their this is called a **hange**.

ods of **separation** use of a **magnet**, a nsoluble materials), The Linnaean system, named after Carl Linnaeus, has different levels where the number of living things in each group gets smaller and smaller, until there will just be one type of animal in the species group.

Microorganisms are very tiny organisms where a microscope has to be used to see them. Examples of microorganisms include dust mites, bacteria and fungi, such as mould. Some microorganisms can be helpful in certain situations. Others can be harmful, and their spread needs to be controlled or contained.

Evolution and Inheritance Evolution is a process of change that takes place over many generations, during which species of animals, plants, or insects slowly change some of their physical characteristics.

This is because offspring are not identical to their parents. It occurs when there is competition to survive. This is called natural selection. **Difference** within a species (for example between parents and offspring) can be caused by inheritance and mutations. Inheritance is when characteristics are passed on from generation to the next. Mutations in characteristics are **not** inherited from the parents and appear as **new** characteristics.

Evidence of **evolution** comes from **fossils** - when these are compared to living creatures from today, **palaeontologists** can compare similarities and differences.

Other evidence comes from living things - comparisons of some species may reveal **common ancestors**.

ground. The days get shorter	the other parts of the food	The electrical current flows	a sieve (base
and the nights get longer.	chain. The number of some	through the wires from the	the solids) a
In the autumn, there are	species will increase, while the	battery (cell) to the bulb,	When a mixt
events such as Halloween and	population of others will	motor or buzzer).	separated be
Bonfire Night. Things people	decrease. This can have a	A switch can break or	original comp
might do are rake leaves, pick	direct impact on the survival of	reconnect a circuit. A switch	called an irre
blackberries and collect	the species.	controls the flow of the	Examples of
conkers and pine cones.	The population of tertiary	electrical current around the	materials bu
The weather may be slightly	consumers depends on healthy	circuit. When the switch is off,	bicarbonate
sunny, windy or rainy. There	populations of producers,	the current cannot flow.	vinegar.
are more clouds in the sky	primary and secondary	When objects are placed in the	
during autumn compared to the	consumers.	circuits, they may or may not	Living things
summer.		allow electricity to pass	and animals
The clothes you might wear	Everyday Materials	through. Objects that are	The main sta
include t-shirts and shorts on	Objects are things that you	made from materials that allow	life cycle
sunnier and warmer days, and	can touch or see.	electricity to pass through and	Foetus - an u
woolly hats and scarves on	Objects are made from	create a complete circuit are	human being
colder days - especially as it	materials.	called electrical conductors .	stages of de
gets closer to winter.	Some materials are natural	Objects that are made from	Newborn - t
In Winter - As the seasons	while others are man -made.	materials that do not allow	has just bee
change from autumn to winter	Natural materials are	electricity to pass through and	Infancy - th
it gets colder still - this is	materials which are found in	do not complete a circuit are	rapid change
because the temperature has	nature Man-made materials	called electrical insulators	learn to walk
fallen Sometimes it can	are materials which have been	An ammeter measures the	stage
freeze overnight and in the	produced by humans	current or flow of electricity	Childhood -
mornings there may be ice and	Materials are used for	through a wire or circuit	things as the
frost Deciduous treas have	different numbers based on	The voltage is the force of an	hacome more
completely last their lagues	their properties	alactric surnant It is	Adelessense
and the breekes are bere	Glass can be used to make	macruped in volta	hady starts
The days set shorten and the	windows because it is	medsured in vorts.	Douy starts
The days get shorter and the	transport Tf on object is	States of motion	prepare rise
the chartest days and the	transparent. If an object is	States of matter	Hormonal ch
the shortest days and the	Transparent, you can see	Particles are what materials	over a tew y
longest nights of all the	Through IT. If an object or	are made from. They are so	Known as put
seasons.	substance is opaque, you cannot	small that we cannot see them	Early adulth
In the winter, there are events	see through it.	with our eyes.	humans are u
such as Christmas and	Rulers can be made from wood,	Particles behave differently in	fittest and s
Valentine's Day. Things people	plastic or rubber because	solids, liquids and gases.	Middle adult
might do are build snowmen,	these materials are smooth and	In the solid state , the material	such as hair
eat warm foods like stews and	can be cut straight .	holds its shape. Solids have	There are al
soups and light fires.	Spoons are made from metal ,	vibrating particles which are	changes agai
The weather may be windy,	because it is waterproof and	closely packed in and form a	reproduce de
rainy and chilly. Sometimes it	can be cleaned easily . Plastic	regular pattern. This explains	Late adultha
also snows.	can also be used as it is light	the fixed shape of a solid and	decline in fit
The clothes you might wear	and it cannot hurt children's	why it can't poured. Solids	Puberty is th
include warm coats, jumpers,	growing teeth.	always take up the same	happens in la
woolly hats and scarves on	Waterproof does not let	amount of space.	adolescence
colder days.	water pass through it.	In the liquid state , the	starts to cho
In Spring - As the seasons	Absorbent materials soaks up	material holds the shape of	hormones. So
change from winter to spring,	liquid easily.	the container it is in. This	include grow
it gets warmer and the	The shape of some materials	means that liquids can change	sweat, hair g
temperature begins to rise.	can be changed when they are	shape, depending on the	legs, under t
Some things that happen in	stretched, twisted, bent and	container. Liquids have	genitals, and
spring are: leaves begin to	squashed.	particles which are close	the body suc
appear on deciduous trees.	Some materials are recyclable	together but random. Liquid	, and breasts.
Some trees begin to blossom	this means that waste		menstruate
	· · · · · · · · · · · · ·		

based on the size of (s) and evaporation. mixture cannot be ed back into the components, this is i irreversible change. s of this include when s burn or mixing ate of soda with

ings their habitats hals including humans histages of the human

an unborn animal or eing in the very early f development - this is a baby that been born. - this is a period of ange. Many toddlers walk and talk at this

d - children learn new they grow. They nore independent. ence - this is when the rts to change and itself for adulthood. l changes take place w years. This is also puberty. ulthood - this is when are usually at their nd strongest. dulthood - changes air loss may happen. e also some hormonal again and the ability to e decreases. **lthood** - there is a fitness and strength. is the change that in late childhood and nce where the body change because of s. Some changes rowth in height, more air growth on arms and er the armpits and on and growth in parts of

such as male genitals sts. Females begin to Adaptation is when animals and plants have evolved so that they have adapted to survive in their environments. For example, polar bears have a thick layer of blubber under their fur to survive the cold, harsh environment of the Arctic while giraffes have long necks to reach the leaves on trees.

Sometimes adaptations can be disadvantageous. One example of this can be the dodo, which became extinct as it lost its ability to fly through evolution. Flying was unnecessary for the dodo as it had lived for so many years without predators, until its native island became inhabited.

When adaptations are **more harmful than helpful**, these are called **maladaptations**.

Many plants begin to grow.	materials can be processed and	particles can move over each	Reproduction
Lambs are born and chicks	used again.	other. Liquids can be poured.	or plant produ
begin to hatch. The days		In the gas state , particles can	individuals sin
become longer and the nights		escape from open containers.	Sexual repro
become shorter.		Gases have particles which are	two parents w
In the spring, there are events		spread out and move in all	female gamet
such as Easter and St. George's		directions.	produce offsp
Day.		When water (in its liquid form)	similar to but
The weather may be slightly		is heated , the particles start	the parent.
sunny but still a little windy and		to move faster and faster until	Asexual repr
rainy on some days.		they have enough energy to	only one parer
The clothes you might wear		move about more freely. The	produce offsp
include long-sleeved tops and		water has evaporated into a	identical to th
long trousers. As it gets closer		water vapour.	Plants reprod
to summer, you may wear t-		When water vapour is cooled ,	gametes can b
shirts and shorts on sunnier		the particles start to slow	pollen. Female
and warmer days.		down. They return to a liquid in	found in the a
In Summer - As the seasons		a process called condensation .	called ovules).
change from spring to summer		With further cooling they turn	occurs when p
it gets warmer still - this is		into a solid structure and ice is	anther is tran
because the temperature has		formed. The water has frozen.	stigma by bee
risen. The days get longer and		The temperature at which	insects. The p
the nights get shorter.		water turns to ice is called the	down and mee
Summer has the longest days		freezing point. This happens at	When this ha
and the shortest nights of all		0°C.	formed - this
the seasons.		The temperature at which	fertilisation.
In the summer, there are		water turns to gas is called the	dispersed so t
events such as the long school		boiling point. This happens at	can begin agai
summer holidays. Things people		100° <i>C</i> .	Some plants,
might do are have picnics, go to			and potatoes,
the beach, have a paddling pool			offspring usin
in the garden and mow the			reproduction
lawn.			The life cycle
The weather may be hot and			birds, amphib
sunny. There may not be many			have similarit
clouds in the sky.			differences. (
The clothes you might wear			that amphibia
include t-shirts, shorts and			through the p
swimming costumes.			metamorphos
It is important to stay safe in			the structure
the summer as the sun can be			changes signif
very strong. You can wear sun			grow (for exa
hats, sunglasses and sun cream			tadpole to fro
to help keep you safe.			to butterfly).

What key vocabulary will our scientists need? Vocabulary is important because it embodies and communicates concepts.						
EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	<u>Plants</u>	Animals including humans	<u>Plants</u>	Animals including humans	Earth and Space	Animals including humans
	Seeds	Nutrition	Air	Movement	Earth	Circulatory
	Bulbs	Survival	Light	Muscles	Sun	Heart
	Deciduous	Water	Water	Bones	Moon	Blood Vessels

is when an animal	
ices one or more	
nilar to itself	
duction: requires	
vith male and	
es (cells) It will	
oring that is	
not identical to	
oduction: requires	
nt and will	
oring that is	
ne parent.	
uction - Male	
be found in the	
gametes can be	
wary (they are	
Pollination	
ollen from the	
isferred to the	
es and other	
ollen then travels	
ts the ovule.	
ppens, seeds are	
is called	
Seeds are then	
that germination	
n.	
such as dattodils	
can also produce	
ig asexual	
<i>(</i>	
iona and incasts	
iaris and insects	
ies ana	
Jne aitterence is	
ins and insects go	
rocess of	
is. This is when	
ot their bodies	
ricantly as they	
mpie, from	
og or caterpillar	

Evenera	en trees Ain		Temperature	Skull	Avis	Veins
Evergree	Fond		Growth	Skeletons	Potation	Artorios
Eleword	(blossom)		Nutrients	Mouth	Day	Arrenes
Datala			Soil	Tonque	Night	Deavyoenated
Felais	Offensi	ino	Depreduction	Tooth	Phagag of the Maan	Velve
Fruit	Vittor	ing	Transportation	Cosenhagus	Phases of the Moon	Valve
Roots	Kitten		I ransportation	Cesophagus	Star Constellation	Exercise
Buid	Calf		Dispersal	Stomach	constellation	Respiration
Seed	Puppy		Pollination	Small Intestine	rorces	
Irunk	Exercise	e	Flower	Large Intestine	Air resistance	Living things and their
Branches	s Hygiene	2	Rocks	Herbivore	Water resistance	habitats
Stem	Living t	hings and their	Fossils	Carnivore	Friction	FISh
	habitat	<u>s</u>	Soils	Canine	Gravity	Birds
Animals	including humans Living		Sedimentary	Incisor	Newton	Snails
Fish	Dead		Metamorphic	Molar	Gears	Slugs
Reptiles	Once liv	ving	Igneous	Sound	Pulleys	Worms
Mammals	s Habitat		Crystals	Volume	Properties and changes of	Spiders
Birds	Energy		Absorbent	Vibration	materials	Insects
Amphibio	ans Food ch	nain	<u>Light</u>	Wave	Hardness	Environment
Herbivor	re Produce	er	Light	Pitch	Solubility	Habitats
Omnivor	e Predato	or	Shadows	Tone	Transparency	Classification
Carnivor	e Prey		Mirror	Speaker	Conductivity	Vertebrates
Leg	Woodlar	nd	Reflective	<u>Electricity</u>	Magnetic	Invertebrates
Arm	Pond		Dark	Cells	Filter	Micro-organisms
Elbow	Desert		Absorb	Wires	Evaporation	Amphibians
Head	Everyda	ay Materials	Reflection	Bulbs	Dissolving	Reptiles
Ear	Wood		Refraction	Switches	Mixing	Mammals
Nose	Plastic		Spectrum	Buzzers	Living things their habitats	
Back	Glass		Rainbow	Battery	and animals including humans	
Wings	Paper		Colour	Circuit	Foetus	Evolution and Inheritance
Beak	Water			Series	Embryo	Fossils
Seasona	I Change Metal		Forces and Magnets	Conductors	Womb	Adaptation
Summer	Rock		Magnetic	Insulators	Gestation	Evolution
Spring	Brick		Force	Amps	Baby	Characteristics
Autumn	Fabrics		Contact	Volts	Toddler	Reproduction
Winter	Foil		Attract	States of matter	Teenager	Genetics
Sun	Hard		Repel	Solid	Elderly	
Day	Soft		Friction	Liquid	Growth	
Moon	Stretch	าง	Poles	Gas	Development	
Night	Stiff	·7	Push	Evaporation	Puberty	
Light	Shiny		Pull	Condensation	Mammal	
Dark	Dull		- un	Particles	Reproduction	
Burk	Rough			Temperature	Insect	
	Smooth			Freezino	Amphibian	
	Bandy			Haating	Pind	
	Benuy	maaf		Heating	Diru Offenning	
	wullerp Absorb	ort			(See also the SDE auminutum)	
	Absorbe	eni			(See also the SRE curriculum)	
	Upaque					
	Iranspa					
	Squashi	ing				
	Bending]				
	Twisting	9				
	Stretch	ning Elastic				

What experiences do we want our scientists to have had? What opportunities will our scientists have had to <i>'make the world a better place</i> ?						
EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Useful science stories	Plants	Animals including humans	Plants	Animals including humans	Earth and Space	Animals including humans
	•Plant a bulb or a seed and	•Investigate how animals are	•Experiment with different	•Identify and group animals	•Use the internet (pen pals) to	•Identify the parts of the
Ourselves / The Body:	watch it grow. Record your	cared for in zoos and farms.	ways to make a seed germinate	with and without skeletons and	establish that the time of day	circulatory system and explain
'From Head to Toe' Eric Carle	observations in a diary.	What do they need to survive?	without soil. Then observe	compare the ways in which they	is different in different places	their functions.
'Doctor Miaow's Big Emergency'	•Compare the growth of that	 Investigate the effects of 	plants as they grow.	move.	in the world.	•Explore the different
Sam Lloyd	plant with a plant (using the	exercise on the body	•Experiment with ways to prove	 Match animals to their 	•Creating working models of	chambers of a heart using an
'Funnybones' Janet & Allan	same bulb or seed) where one	Participate in a series of	that plants need water to stay	skeletons and explain your	the solar system.	animal's heart from the
Alhburg	of the conditions is different	exercises and investigate how	healthy.	reasons for this.	 Act out the rotations and 	butcher.
'The Selfish Crocodile' Charles	(no water, no light, a smaller	each exercise: makes your body	•Experiment with ways to prove	•Explore ideas about what	orbits of the planets round the	•Make a circulatory system
& Jerry	container).	feel, affects your breathing,	that plants need light to stay	would happen if humans did not	sun.	with a pump.
'Crocodiles don't brush their	•Plant seeds or bulbs to give	uses each of your muscles	healthy.	have skeletons.	•Construct shadow clocks and	•Create a presentation to show
teeth' Fancy & Wilson-Max	away to people in the local	•Compare and contrast the	• Compare the effect of	•Identify which bones are used	sundials.	how our blood is pumped around
	community. Possibly one of our	diets of different animals	different factors in plant	for support (e.g. backbone),	•Keep a Moon diary over the	the body.
<u>Animals:</u>	local residential homes.	(including their pets) and	growth (e.g. the amount of	which are used for protection	course of a month - what do	•Analyse line graphs that show
'Mister Seahorse' Eric Carle	•Find ways to prove that plants	decide ways of grouping them	water, the amount of light and	(e.g. cranium) and which are	you notice?	the change in heart rate over
'Panda Bear, Panda Bear' Eric	are alive	according to what they eat.	the amount of	used for movement (e.g. joints)	_	time before, during and after
Carle	•Go on a wild plant hunt! Create	•Record a food diary and	ferfiliser).Discuss what would	•Experiments to find out which	Forces	exercise.
'Dogs', 'Wolves', 'The Rabbit	a fally chart to show how many	evaluate your diet.	make this a fair test.	is the strongest muscle group	•Experiment to test the	•Investigate which exercise
Problem' Emily Gravett	of each plant you have found	•Research how different foods	·Place white carnations in dyed	•Dissect a chicken wing to	strength of different forces	produces the fastest pulse?
'Egg Day' J Dunbar	and then use the information to	contribute to a varied diet and	water to observe now plants	identify the muscles and	and work out now they can be	How would you make this a fair
'The Emperor's Egg' Martin	answer questions.	design meals based on your	Transport water.	Tendons.	reduced.	Test?
Jenkins	·Ose Time-Tapse photography to	research.	·Dissect a flower and identify	•Make a model arm to	•Make parachules 10	Living things and their
'Once upon a time, Upon a nest'	change	Describe what happens if one	that halp with fantilization	work in point contracting and	works. Ensure that only one	Living mings and meir
Emmett & Harry	·Go on a trace bunt around the	diat and how come around of	Act out the process of	avtending to move the bange	variable is changed while other	al acata a nanaa of habitata on
	school on on a trip - what types	neonle (a a vegetariane) may	Pact out the process of	•Compare the teeth of enimals	variables stay the same	•Locate a range of habitats on
Plants / Growing things:	of trees can you see?	compensate for that	seeds are formed	and predict if they are	•Tryestigate the amount of	•Carefully observe minibeasts
Ten Seeds' Ruth Brown	•Collect fallen leaves and	compensare for mar.	•Dissect fruits and use	carnivores or herbivores	friction created by different	in a microbabitat and use a
Jasper's Beanstaik INICK	identify which tree they came	Living things and their	microscopes and magnifying	•Tryestigate the amount of	surfaces. Use measures (such	classification key to identify
Butterworth	from using pictures to help you	habitats	alasses to observe their	sugar in drinks and learn how	as length and time) to show	them Record these in a variety
Kete Detty & Alex Scheffler	•Sort the leaves between	·Conduct an experiment to	structure Use this to explain	sugar leads to an increase in	how far or fast and object	of ways (e.g. Venn and Carroll
'Oliven's Vegetables' Vivian	deciduous and everage trees	decide if an object is alive or	how seeds are dispersed	plague and how this destroys	travels	diagrams tables)
Erench	·Label the parts of a plant	not (such as a car)		tooth enamel.	•Draw diagrams to show how	•Use a classification key to
'Fran's Flower' Lisa Bruce	showing where the leaves,	•Investigate habitats (such as	Rocks	•Find out what happens to a	objects move down ramps,	sort plants and vertebrate and
Truns Tiower Lisu bruce	flowers (blossom), petals, fruit,	hedgerows and trees) and	•Explore the types of rocks you	tooth left in various types of	through the air and through	invertebrate animals into
Movement:	roots, bulb, seed, trunk,	micro-habitats (such as under	can find in the local	drinks	water, using arrows to show	groups, describing their key
'Mr Grumpy's Motor Car' John	branches, and stems are.	stones and under logs) in the	environment.	•Create booklets to share with	the direction of the forces.	features.
Burningham		school environment or forest	•Make your own food rocks:	younger children about the	•Explore resistance in water by	•Design own keys and branch
'	Animals including humans	school.	Sedimentary - sandwich with	need for brushing your teeth	making and testing boats of	diagrams to identify animals
Sound / Echo:	•Have caterpillar eggs in class	 Investigate what habitats 	layers squashed, Metamorphic	and the dangers of fizzy drinks	different shapes.	and plants on the school site
'Peace at Last' Jill Murphy	and take time lapse	animals/insects like using	- different biscuit doughs	and sugars to your dental	•Design and make products	and lead another year group on
'Quiet' Paul Bright	photography of their cycle of	'choice chambers'	squashed then heated and	health.	that use levers, pulleys, gears	a bug hunt using these charts
'Little Beaver and the Echo'	life.	•Go on a minibeast hunt and	Igneous rocks- different	•Demonstrate the process of	and/or springs and explore	to classify.
Amy McDonald	 Match animals to their 	compare two different	chocolates melted.	digestion by creating their own	their effects. (Knex etc.)	•Use simple computer software
'One Stormy Night' Ruth Brown	offspring then compare and	microhabitats. What	 Investigate what soil is made 	digestive system.		programmes to create a
	contrast offspring to their	minibeasts can you find? Why	from by mixed different soils		Properties and changes of	branching classification key.
<u>Space:</u>	parents.	can they survive in their	in cups of water then leaving to	Sound	<u>materials</u>	•Explore examples of human
'Man in the Moon, Day in the	•Order the stages in human	habitat? Create a tally chart or	settle to display layers.	•Experiment with rice on drums	•Experiment to find properties	impact (both positive and
life of Bob' Simon Bartram	life.	pictogram to show your results.	 Investigate drainage of 	and rulers pinged on tables to	of materials, e.g. does it	negative) on environments.
'Eric and the Red Planet'	•Find and classify animals in	•Use your knowledge of biomes	different soils using soils	demonstrate how sounds are	attract to a magnet, can heat	•Organise an event to make the
Caroline Glisksman	the school environment e.g.	to describe the types of		created through vibrations.	pass through it	rest of the school aware of one

Whatever Next' Jill Murpy	group animals according to	animals and plants that live	placed inside filter paper and a	•Experiment with glass jars	 Experiment
	what they eat	there. Match animals and	funnel.	filled with water to investigate	changes, e.g.
<u>Light & Dark / Shadows:</u>	 Look closely at the features 	plants to their habitats (e.g.	•Explain why rocks are used for	pitch.	compare the
The Owl who was Afraid of the	of animals using magnifying	forest, ocean, poles, desert).	different purposes based on	•Use a data logger to record	place when co
Dark' J Tomlinson	glasses	•Answer questions such as	their properties.	how the volume of sounds	bicarbonate o
Moonbear's Shadow' Frank	•Visit from an 'animal person' to	'Why would a polar bear not	•Research the different ways	change as the distance from	vinegar. (Mak
Asch	introduce less common animals	survive in the desert?'	fossils are made.	the source increases.	away and say
Kipper's Monster' Mick Inkpen	•Learn songs to recall the main	•Construct food chains using	 Sort different types of rocks 	•Use one object (such as a	those who he
The Gruffalo's Child' Julia	parts of the body	given plants and animals, make	based on how rough or smooth	saucepan) and try and create a	school. Lunch
Donaldson	•Test senses through taste	the longest food chain possible.	they are, whether they have	scale of sounds by manipulating	office staff,
	tests, feely bags, colour	•Investigate the range of	grains or crystals, how	it.	etc.)
<u>Materials:</u>	blindness tests etc	impacts should one aspect of	permeable they are, how easily	•Make/use musical instruments	•Find the bes
Kipper's Rainy Day' Mick	•Draw around one of the pupils	the food chain die out	they can break down, how	using different length strings.	an ice cube fr
Inkpen	in your class - label the	•Match predators and their	strong they are and what they	How do their pitches differ?	Remember to
Traction Man is Here!' Grey &	different parts of the body	prey depending on their	look like.	•Fill identical jars with	test.
Cape	and describe what each part	habitats.		different volumes of water.	 Investigate
The Slimy Book' Babette Cole	does.	•Create food chains for	<u>Light</u>	Which one creates the highest	hot water coo
Biscuit Bear' Grey & Cape	•Complete a simple exercise	different habitats and compare	•Experience the lack of light by	pitch?	thermal insul
The Queen's Knickers' Nicholas	(such as a star jump) and	them. How do the producers,	creating dark dens.	•Which material would make	the temperat
Allan	describe which parts of your	predators and prey compare?	•Draw diagrams to show how	the best sound defender? How	plot these on
	body move.	What are their teeth like?	light travels, to show how we	can you investigate this?	, graph. Use th
	•Participate in a sensory	•Compare animal populations	see and what happens when	, ,	ask and answe
	experience where you taste,	and explain why some	light is reflected from a	Electricity	•Find out if t
	feel, look at and see different	populations (e.g. insects) might	mirror.	•Set up circuits and predict	also make goo
	foods (check for allergies	be higher than others (e.g.	 Design an experiment to 	whether the bulb will light or	conductors.
	first).	wolves)	measure shadow length by	not.	•Design an ex
	•Use senses to compare	•Explore how the changing	changing a variable.	•Set up circuits and	investigates o
	different textures, sounds and	environment is having an impact	•Explore which objects form	experiment with ways to make	consider whic
	smells.	on feeding relationships and	shadows when light is shone on	the bulbs brighter.	could change.
	•Discuss activities where you	food chains/webs.	them and how you can change	•Set up a circuit to test	•Create a var
	might use more than one sense	•Hold a bake sale to raise	the size and shape of shadows	materials that are conductors	using materia
	(e.g. playing football).	money to adopt an animal that	by using the same object.	or insulators.	sand, water, p
		is endangered due to changes	•Use data loggers to record	•Identify the effects of	rice and use a
	<u>Seasonal Change</u>	in its environment.	how much light travels through	changing a component in a	methods to s
	Probably taught as a short		various materials.	circuit.	
	unit each term looking at the	Everyday Materials	•Create shadow puppets to	•Name the basic parts including	Living things
	different seasons.	•Use 'feely bags' to describe	show how light travels and to	cells, batteries, wires, bulbs,	and animals i
	•Measure the temperature	the properties of objects	demonstrate that a shadow has	switches, motors and buzzers.	•Compare the
	every day and record when the	through touch alone.	the same shape as the object	•Draw circuits using circuit	mammals, am
	sun rises and sets - what do	 Sort natural materials from 	that casts them.	symbols.	and birds. W
	you notice about the	man-made materials?	 Make a light ray pass around 	•Create circuits using switches	about their li
	differences from your results	 Investigate a variety of 	corners or through a chicane of	•Predict, then investigate what	is different?
	of the other the units?	plastics and find an example of	books using mirrors?	happens when more batteries	most and few
	 Analyse simple graphs that 	rough plastic, smooth plastic,	 Make a periscope and explain 	are added to a circuit. Explain	•Compare the
	show how day length changes	transparent plastic, opaque	how it works using diagrams	why this happens.	growth patte
	throughout the seasons.	plastic etc.	and scientific vocabulary. Use	•Predict, then investigate what	other animals
	 Investigate seasons in the 	 Investigate how some objects 	the idea that light appears to	happens when more bulbs,	•Observe cho
	Northern and Southern	can be changed by squashing,	travel in straight lines to	motors are added to a circuit.	over a period
	Hemispheres.	bending, twisting and	explain how it works.	Explain why this happens.	example, by h
	 Investigate animal behaviours 	stretching.		•Investigate what happens	rearing chick
	during the different seasons.	•Distinguish between absorbent		when the voltage of the	different ani
	E.g. animals that hibernate or	and waterproof materials.	Forces and Magnets	battery changes.	and grow.
	migrate in winter months and	Investigate what happens when	 Investigate the amount of 	•Investigate what happens	•Research th
	return in the summer.	water is placed on these	friction created by different	when the length of the wires	periods of ot
		materials.	surfaces. Use measures (such	changes	comparing th

with irreversible Observe and changes that take akes are baked or of soda mixes with ke cakes to give thank you to elp us around time supervisors, cleaning staff

st material to stop rom melting. o keep it a fair

the rate at which ols using different ators. Measure ture over time and a the same line he line graph to er questions. thermal conductors od electrical

xperiment that dissolving ch variables you

riety of mixtures als such as salt, paper clips and a variety of separate them.

their habitats

including humans e life cycles of phibians, insects hat is similar ife cycles? What Which have the vest parts? e life cycles and ern of humans to s. anges in an animal

l of time (for hatching and ks), comparing how imals reproduce

ne gestation Ther animals and Nem with humans

of these situations in the world.

•Sort scenarios where microorganisms might be helpful (e.g. yeast in baking) or harmful; (e.g. infectious diseases).

Evolution and Inheritance

•Investigate the work of renowned palaeontologists such as Mary Anning and how Charles Darwin and Alfred Wallace developed their ideas on evolution.

•Identify examples of how animals have adapted to their environments.

•Research and then create a fact file of an animal or plant identifying how it has adapted to its environment and how it has evolved to survive.

•Create a new planet and describe the environmental features. What animals and plants can live there? How have they adapted to survive?

•Go on a nature walk - what signs of autumn, winter, spring or summer can you spot? •Match events to the seasons they happen in? What is weather like during these events (e.g. Christmas Day, Halloween, and Bonfire Night?) •Discuss why it is good that fireworks happen in the autumn. What would happen if they happened in the summer? •Discuss what happens when the children go home from school in the different seasons- what do they notice about daylight? Compare this to what happens in the other seasons.	 Group materials based on their properties. Consider why some properties of materials make them suitable or unsuitable for different uses. What is the best material for an umbrella, lining a dog basket, a superhero costume, curtains or a bookshelf? Investigate if some items can be made out of more than one material (e.g. cutlery) and explain why. Discuss which materials are recyclable and why. Follow the recycling process. Find out about people who have developed useful new materials, for example John Dunlop, Charles Macintosh or John McAdam. 	as length and time) to show how far or fast and object travels. •Explore the uses of magnets in everyday objects •Group everyday objects into magnetic and non-magnetic by testing with magnets •Investigate if the size of a magnet affects how strong it is (using chains of paper clips of varying lengths) •Investigate if all metals are magnetic. •Observe what happens when magnets with similar poles are placed next to each. Repeat this for when the poles are different. •Create a game using this magnetic knowledge. Use them to set up a stall to raise money for a local charity.	 Design and make a set of traffic lights or burglar alarm. States of matter Group materials according to their states. Act out the particle structure of solids, liquids and gases. Explore the effect of temperature on substances such as chocolate, butter, cream. Compare their melting points and place them in a table. Research the temperature at which materials change state, for example, when iron melts or when oxygen condenses into a liquid. Experiment with the varying melting points of foodstuffs. (Do healthy foods melt quicker/slower?) Create a solar water still to demonstrate evaporation and condensation. (The water cycle) Observe and record evaporation over a period of time, for example, a puddle in the playground or washing on a line, and investigate the effect of temperature on washing drying or snowmen melting. Analyse and interpret different forms of data (tables, graphs) to show the effects of temperature on states of matter. 	•Review how p •Grow new plan different part plant, for exar and root cuttin bulbs. •Collect data of about height a different ages Record the me median height different ages summarising re •Create a Veni show what the differences ar children, adole adults.

For useful texts go to:

https://www.stem.org.uk/teaching-science-through-stories

https://www.booksfortopics.com

y plants reproduce. plants from arts of the parent kample, seeds, stem ttings, tubers,	
a around school t and hand span of ge ranges of pupils. mean, mode and ht of pupils of ges. Create a graph g results. enn diagram to the similarities and are between olescents and	